首页休闲资讯

二次互反律什么时候学(二次互反律)

发布时间:2024-05-20 10:27:12

大家好,次互次互小讯来为大家解答以上的问题。二次互反律什么时候学,反律反律二次互反律这个很多人还不知道,候学现在让我们一起来看看吧!

1、次互次互Category: 数论   二次互反律是反律反律经典数论中最出色的定理之一。

2、候学二次互反律涉及到平方剩余的次互次互概念。

3、反律反律 设a,候学b是两个非零整数,我们定义雅克比符号(a/b):如果存在整数x,次互次互 使得b整除(x^2-a),那么就记(a/b)=1; 否则就记(a/b)=-1。反律反律

4、候学 在b是次互次互素数时这个符号也叫做勒让德符号。

5、反律反律   高斯二次互反律:   设p和q为不同的候学奇素数,则(p/q)(q/p)=( − 1)^[(p − 1)(q − 1) / 4]   二次互反律漂亮地解决了勒让德符号的计算问题,从而在实际上解决了二次剩余的判别问题。

6、高斯在1796年作出第一个严格的证明,随後他又发现了另外七个不同的证明。

7、高斯把二次互反律誉为算术理论中的宝石,是一个黄金定律。

8、有人说:“二次互反律无疑是数论中最重要的工具,并且在数论的发展史中处于中心地位。

9、”   高斯之後雅克比、柯西、刘维尔、克罗内克、弗洛比纽斯等也相继给出了新的证明。

10、至今,二次互反律已有150个不同的的证明。

11、二次互反律可以推广到高次互反律。

12、   二次互反律被称为“数论之酿母”, 在数论中处于极高的地位。

13、 后来希尔伯特、塞尔等数学家将它推广到更一般的情形。

14、   二次互反律的一个特殊情形:2永远是8n±1型质数的平方剩余,永远是8n±3型质数的非平方剩余。

15、   证明:(4n)!(mod8n+1)≡(2*4*6*8*……*(4n))*(1*3*5*7*……*(4n-1))   ≡(2^(2n)*(1*2*3*4*……*(2n)))*((-8n)*(-8n-2)*……*(-4n-2))   ≡(2^(2n)*(1*2*3*4*……*(2n)))*((- 2)^(2n)*((4n)*(4n-1)*……*(2n+1)))   ≡2^(4n)*(4n)!   ∴当8n+1是质数时,必有2^(4n)≡1(mod8n+1),   ∴2永远是8n+1型质数的平方剩余,其余的可类似证明。

本文到此分享完毕,希望对大家有所帮助。

友情链接:

外链: